Affiliation:
1. School of Physical Education, Yunnan Minzu University, Kunming, Yunnan 650500, China
Abstract
In order to meet the optimization needs of physical education curriculum resource allocation, the author proposes a deep belief-based physical education curriculum resource allocation technology. The efficient feature abstraction and feature extraction capabilities of deep belief technology fully explore the interests and preferences of learners on course resources. Because deep belief has strong capabilities in feature detection and feature extraction, it has unique and efficient feature abstraction capabilities for different dimensional attributes of input data; the author proposes a DBN-MCPR model optimization method based on deep belief classification in the MOOC environment. Experimental results show that when the number of iterations reaches about 80, the RMSE of DBN-MCPR trained with the training dataset without learner feature vector is 77.94%, while the RMSE of DBN-MCPR trained with the dataset with learner feature vector is 77.01; DBN-MCPR with full eigenvectors tends to converge after about 40 iterations, while DBN-MCPR without learner eigenvectors starts to converge after about 15 iterations; this result is in line with the characteristics of the internal network structure of DBN. Conclusion. This application proves that the technical research based on deep belief can effectively meet the needs of the optimization of physical education curriculum resource allocation.
Funder
the University-Level Educational Reform Project
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献