Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

Author:

Liu Hui-Fang1,Zhang Hui-Jie1,Hu Qi-Xian1,Liu Xiao-Yan1,Wang Zhi-Quan2,Fan Jia-Yan3,Zhan Ming2,Chen Feng-Ling1

Affiliation:

1. Department of Endocrinology, The Shanghai Third People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201900, China

2. State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin No. 2 Road, Shanghai 200025, China

3. Department of Ophthalmology, The Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China

Abstract

Type 2 diabetes (T2D) is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM) on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs) from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice) obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3