Performance of Various Voltage Stability Indices in a Stochastic Multiobjective Optimal Power Flow Using Mayfly Algorithm

Author:

Kyomugisha Rebeccah1ORCID,Muriithi Christopher Maina2ORCID,Nyakoe George Nyauma3ORCID

Affiliation:

1. Electrical Engineering Department, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya

2. Electrical Engineering Department, Murang’a University of Technology, Murang’a, Kenya

3. Electrical and Computer Engineering Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Abstract

The performance of voltage stability indices in the multiobjective optimal power flow of modern power systems is presented in this work. Six indices: the Voltage Collapse Proximity Index (VCPI), Line Voltage Stability Index (LVSI), Line Stability Index (Lmn), Fast Voltage Stability Index (FVSI), Line Stability Factor (LQP), and Novel Line Stability Index (NLSI) were considered as case studies on a modified IEEE 30-bus consisting of thermal, wind, solar and hybrid wind-hydro generators. A multiobjective evaluation using the multiobjective mayfly algorithm (MOMA) was performed in two operational scenarios: normal and contingency conditions, using the MATLAB–MATPOWER toolbox. Fuzzy Decision-Making technique was used to determine the best compromise solutions for each Pareto front. To evaluate the computational efficiency of the case studies, a preference selection index was used. The results indicate that VCPI and NLSI yielded the best-optimized system performance in minimizing generation costs, transmission loss reduction, and simulation time for normal and contingency conditions. The best-case studies also promoted the most scheduled reactive power generation from renewable energy sources (RES). On average, the VCPI index contributed the highest penetration level from RES (13.40%), while the Lmn index had the lowest. Overall, VCPI and Lmn index provided the best and worst average performance in both operating scenarios, respectively. Also, the MOMA algorithm demonstrated superior performance against the multiobjective harris hawks algorithm (MHHO), multiobjective Jaya algorithm (MOJAYA), multiobjective particle swarm algorithm (MOPSO), and nondominated sorting genetic algorithm III (NSGA-III) algorithms. In all, the proposed approach yields the lowest system cost and loss compared to other methods.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3