Role of 25 MHz Ultrasound Biomicroscopy in the Detection of Subluxated Lenses

Author:

Shi Mingyu1ORCID,Ma Liwei1ORCID,Zhang Jinsong1,Yan Qichang1ORCID

Affiliation:

1. Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, The Key Laboratory of Lens in Liaoning Province, Shenyang, 110005 Liaoning, China

Abstract

Background. The purpose of this observational case series study was to investigate the role of 25 MHz ultrasound biomicroscopy (UBM) in detecting subluxated lenses and compare it with 50 MHz UBM. Methods. 45 patients (49 eyes) with suspected subluxation of the lens and 20 normal volunteers (40 eyes) were included. Different cross-sectional images of the lens position were captured in axial and longitudinal scanning modes using 25 and 50 MHz UBM. The main outcome measurements included the linear distance between the lens equator and ciliary process, the difference value (D-value) between the same cross section of the above bilateral linear distance in the normal and the subluxated subjects, the diagnostic accuracy, and the testing times obtained with 25 and 50 MHz UBM. Results. The position of the lens on axial sections could be clearly shown by using 25 MHz UBM. The D-value of the subluxated eyes was 1-2 mm longer than that of the normal ones. There was a statistically significant difference between 25 and 50 MHz UBM in showing subluxation of the lens, the testing time was significantly faster (2.0 min versus 7.5 min), and the diagnostic accuracy was much higher (98.0% versus 71.4%) with 25 versus 50 MHz UBM. Fifteen eyes with slightly subluxated lens were detected by 25 MHz UBM, and only one eye with slight lens subluxation was detected by 50 MHz UBM. Conclusions. The results indicated that 25 MHz UBM has a greater diagnostic value than 50 MHz UBM in verifying the status of the lens subluxation and can provide reliable and quantitative imaging evidence for clinical use. This trial is registered with ChiCTR–DOD –15007603.

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3