Possible Monitoring and Removal of As(III) by an Integrated System of Electrochemical Sensor and Nanocomposite Materials

Author:

Chu Xuan T.1,Trieu Quan V. V.12,Tran Thinh Q.12,Pham Thanh D.1,Vu Trung Q.3,Tran Thuy H.1,Mai Tuan A.12ORCID

Affiliation:

1. Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hanoi, Vietnam

2. National Center for Technological Progress, 25 Le Thanh Tong, Hanoi, Vietnam

3. Hanoi National University of Education, 136 Xuan Thuy Road, Hanoi, Vietnam

Abstract

In this study, nanocomposites composed of magnetite nanoparticles (MNPs) coated with polyaniline fabricated by in situ polymerization were prepared for arsenic adsorption. Properties of particular MNPs and their nanocomposites were characterized with scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. The As(III) concentration before and after adsorption on nanocomposites was detected by atomic absorption spectroscopy method and then compared with the results measured by a self-developed potentiostat system with anodic stripping voltammetry method. The polyaniline coating resulted in an improvement for As(III) adsorption ability of magnetite nanoparticles, and among the three compositions of PAni/MNP nanocomposites, the 5 wt% PAni showed the highest capability of As(III) adsorption (or removal) of 50 mg/g. Performing pH investigation, the concentration of remaining As decreased when pH increased from 2 to 5 and reached saturation value at higher pH. Above all, the electronic device can be integrated with As(III) removal system using PAni/MNP nanocomposites, proving to act as an independent monitoring system, and even more the adsorbent on the composites could be removed and the recyclability of the material was also investigated.

Funder

National Foundation for Science and Technology Development

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3