Simvastatin-Induced Insulin Resistance May Be Linked to Decreased Lipid Uptake and Lipid Synthesis in Human Skeletal Muscle: the LIFESTAT Study

Author:

Larsen Steen12ORCID,Vigelsø Andreas1,Dandanell Sune13ORCID,Prats Clara1,Dela Flemming14ORCID,Helge Jørn Wulff1

Affiliation:

1. Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

2. Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland

3. Department of Physiotherapy and Occupational Therapy, Metropolitan University College, Copenhagen, Denmark

4. Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark

Abstract

Background. A prevalent side-effect of simvastatin is attenuated glucose homeostasis. The underlying mechanism is unknown, but impaired lipid metabolism may provide the link. The aim of this study was to investigate whether simvastatin-treated patients had a lower capacity to oxidize lipids and reduced expression of the major proteins regulating lipid uptake, synthesis, lipolysis, and storage in skeletal muscle than matched controls. Materials and Methods. Ten men were treated with simvastatin (HbA1c: 5.7 ± 0.1%), and 10 healthy men (HbA1c: 5.2 ± 0.1%) underwent an oral glucose tolerance test and a muscle biopsy was obtained. Fat oxidation rates were measured at rest and during exercise. Western blotting was used to assess protein content. Results. Patients treated with simvastatin had impaired glucose tolerance compared with control subjects, but fat oxidation at rest and during exercise was compatible. Skeletal muscle protein content of CD36, lipoprotein lipase (LPL), and diacylglycerol acyltransferase (DGAT) 1 were lower, and DGAT 2 tended to be lower in patients treated with simvastatin. Conclusions. Patients treated with simvastatin had a reduced capacity to synthesize FA and diacylglycerol (DAG) into triacylglycerol in skeletal muscle compared to matched controls. Decreased lipid synthesis capacity may lead to accumulation of lipotoxic intermediates (FA and DAG) and hence impair glucose tolerance.

Funder

Danish Council for Independent Research—Medical Sciences

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3