Study on the Interaction between Soil and the Five-Claw Combination of a Mole Using the Discrete Element Method

Author:

Yang Yuwan12ORCID,Li Mo12,Tong Jin12ORCID,Ma Yunhai12

Affiliation:

1. The Key Laboratory of Bionic Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China

2. The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China

Abstract

A mole is a born digger spending its entire existence digging tunnels. The five claws of a mole’s hand are combinative to cut soil powerfully and efficiently. However, little was known in detail about the interaction between the soil and the five-claw combination. In this study, we simulated the soil cutting process of the five-claw combination using the discrete element method (DEM) as an attempt for the potential design of soil-engaging tools to reduce soil resistance. The five-claw combination moved horizontally in the soil bin. Soil forces (draught and vertical forces) and soil failure (soil rupture distance ratio) were measured at different rake angles and speeds. Results showed that the draught and vertical forces varied nonlinearly as the rake angle increased from 10 to 90°, and both changed linearly with the speed increasing from 1 to 5 m/s. The curve of the soil rupture distance ratio with rake angles could be better described using a quadric function, but the speed had little effect on the soil rupture distance ratio. Notably, the soil rupture distance ratio of the five-claw combination in simulation was on average 19.6% lower than the predicted ratio of simple blades at different rake angles indicating that the five-claw combination could make less soil failure and thereby produce lower soil resistance. Given the draught and vertical forces, the performance of the five-claw combination was optimized at the rake angle of 30°.

Funder

111 Project

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3