Dynamic Response Simulation of Lining Structure for Tunnel Portal Section under Seismic Load

Author:

Liu Guoqing12ORCID,Chen Juntao12ORCID,Xiao Ming12ORCID,Yang Yang3

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China

3. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China

Abstract

Portal section is the weak link of seismic fortification for tunnel structure. Assuming that seismic wave is the vertical incident elastic plane wave, the plane wave input method for the portal section was discussed in this paper; that is, the wave input problem can be converted to the problem of calculating equivalent nodal force at artificial boundaries. Based on different damage evolution processes of concrete under tension and compression conditions, the tension and compression damage variables were defined and solved, respectively. And then a simple elastic dynamic damaged constitutive model for concrete lining was built. According to the characteristics of dynamic interaction between the lining and rock, and based on the dynamic contact force algorithm, an analytical model for joint loading between the lining and rock was built. This model can simulate lining features such as bond, separation, and slip under seismic load. The dynamic response characteristics of lining structure for the portal section under seismic load were analyzed by taking example for an exit section of Dianzhong diversion project in strong earthquake area. The results show that the relative displacement magnitudes of the lining parts are related to the vibration direction of the seismic wave, and the peak displacements decrease gradually to the fixed values from the portal to the interior. The damage coefficients of the lining parts accumulate gradually over time, and the farther the lining is away from the portal, the less serious the seismic damage is. The separation and slip zone distributions of the lining are basically consistent with its severe seismic damage area, which are mainly at haunch, spandrel, and arch foot within a certain range of distance from the portal. The seismic fortified length and key fortified parts of tunnel structure for the portal section can be determined according to the calculation results.

Funder

National Key Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3