Effect of Stress Corrosion on Relaxation of Large Diameter BGFRP Bars

Author:

Li Guowei1ORCID,Bakarr Sidi Kabba1ORCID,Wang Jingqiu2,Liu Xue3,Hong Chengyu4ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing, 210098, China

2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, 210098, China

3. Guangdong Nanyue Transportation Investment Construction Co., Ltd., Guangzhou, 510000, China

4. Department of Civil Engineering, Shanghai University, Shanghai, 200444, China

Abstract

Fibre reinforced polymer (FRP) rebars do not corrode like steel rebars when they are exposed to moisture such as water. Instead they have been shown to degrade when exposed to alkaline media and, in some cases, acids. It has especially demonstrated extensive deterioration when it has been simultaneously stressed and exposed to harsh environments. This combined effect has been termed as stress corrosion. The effect of stress corrosion on the stress relaxation of large sized prestressed basalt-glass fibre reinforced polymer (BGFRP) bars was analyzed by laboratory experiments. Two stressed bars were submerged in aqueous solutions of acid and alkaline in two separate plastic tanks under constant strain. Stress reduction values were observed over a period of about 7 months. Bars immersed in acid bath had an average stress relaxation of 9.2% and that in the alkali bath was observed to be about 13.4%. These results support earlier assertions that exposure of GFRP bars to alkali media is likely to be detrimental to the long-term durability of the reinforced structure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Process Chemistry and Technology,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3