Dynamic Characteristics Analysis and Test of Dual-Driving Feed System Driven by Center of Gravity

Author:

Lu Hong12,Fan Wei1,Zhang Xinbao3ORCID,Zhang Yongquan1,Wang Shaojun4,Duan Meng1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Hubei, China

2. Key Laboratory of Hubei Province for Digital Manufacture, Hubei, China

3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Hubei, China

4. School of Industrial and Engineering Technology, Southeast Missouri State University, Cape Girardeau, MO, USA

Abstract

Dual-driving feed system (DDFS) driven by center of gravity (DCG) has been widely used in advanced manufacturing machine for its high rigidity and precision. However, the DCG technology requires that the joint force coincides with the center of gravity of the sliding stage. The dual-driving synchronization and tracking performance will be affected by the change of center of gravity of the sliding stage. Therefore, this paper proposes dynamic characteristics modeling, identification, and control scheme for DDFS driven by center of gravity (DCG). Firstly, a redundancy dynamic model including rotation and pitch vibration caused by the change of the position of center of gravity is presented for DDFS DCG based on the Lagrange method. The model parameters are identified by system identification experiment, and the predictive natural frequencies and vibration modes by the proposed dynamic model are compared by modal experiment. Moreover, the dynamic model-based cross-coupled sliding mode control (CCSMC) is proposed for DDFS DCG. Then, the proposed dynamic model-based CCSMC has been compared with normal cross-coupled sliding mode control (NCCSMC). Both the simulation and experimental results show that the proposed dynamic characteristics analysis and test scheme of DDFS DCG are validated effectively by comparisons.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3