Filled Function Method for Nonlinear Model Predictive Control

Author:

Degachi Hajer1ORCID,Naffeti Bechir2,Chagra Wassila1,Ksouri Moufida1

Affiliation:

1. Tunis El Manar University, National Engineering School of Tunis, Tunisia

2. Carthage University, Faculty of Sciences of Bizerte, Tunisia

Abstract

A new method is used to solve the nonconvex optimization problem of the nonlinear model predictive control (NMPC) for Hammerstein model. Using nonlinear models in MPC leads to a nonlinear and nonconvex optimization problem. Since control performances depend essentially on the results of the optimization method, in this work, we propose to use the filled function as a global optimization method to solve the nonconvex optimization problem. Using this method, the control law can be obtained through two steps. The first step consists of determining a local minimum of the objective function. In the second step, a new function is constructed using the local minimum of the objective function found in the first step. The new function is called the filled function; the new constructed function allows us to obtain an initialization near the global minimum. Once this initialization is determined, we can use a local optimization method to determine the global control sequence. The efficiency of the proposed method is proved firstly through benchmark functions and then through the ball and beam system described by Hammerstein model. The results obtained by the presented method are compared with those of the genetic algorithm (GA) and the particle swarm optimization (PSO).

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory Optimization of Multi-UAVs for Marine Target Tracking during Approaching Stage;Mathematical Problems in Engineering;2022-12-26

2. Predictive control of fractional Hammerstein models;2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2022-05-23

3. Control of Bioprocess;Control in Bioprocessing;2020-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3