One Year Weekly Size-Resolved Air Sampling of SARS-CoV-2 in Hospital Corridors and Relations to the Indoor Environment

Author:

Thuresson Sara1ORCID,Fraenkel Carl-Johan23ORCID,Sasinovich Sviataslau4ORCID,Medstrand Patrik245ORCID,Alsved Malin1ORCID,Löndahl Jakob1ORCID

Affiliation:

1. Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden

2. Department of Clinical Microbiology and Infection Control, Region Skåne, Lund, Sweden

3. Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden

4. Department of Translational Medicine, Lund University, Lund, Sweden

5. SciLifeLab, Lund University, Lund, Sweden

Abstract

Background. Airborne SARS-CoV-2 plays a prominent role in COVID-19 transmission. Numerous studies have sampled air from patient rooms, but airborne spread to other hospital areas such as corridors is less investigated. Methods. Size-fractionated aerosol particles were collected weekly, with 12 hours of sampling time daily, in corridors at two infectious disease wards in southern Sweden between March 2020 and May 2021. Samples were analysed with real-time reverse transcription polymerase chain reaction (RT-qPCR) for detection of SARS-CoV-2 RNA. Indoor temperature, relative humidity, and CO2 concentration were monitored during the sampling period. Results. 20 of the 784 collected samples contained SARS-CoV-2 RNA, although in low concentrations. Positive air samples were found in sizes between 0.14 and 8.1 μm, but none >8.1 μm. 45% were found in submicron particles. No clear seasonal pattern was observed among the positive samples. There was no significant difference in the positivity rate of the samples between the two wards. Conclusions. SARS-CoV-2 was only detected in 2.6% of the aerosol samples, which indicates that the spread of airborne virus from patient rooms to the corridor was limited.

Funder

SciLifeLab Pandemic Laboratory Preparedness (PLP) Program

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3