Affiliation:
1. Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
2. Brain Connectivity Lab, University of Electronic Science and Technology of China, 611731, China
Abstract
Therapeutic antibodies are one of the most important parts of the pharmaceutical industry. They are widely used in treating various diseases such as autoimmune diseases, cancer, inflammation, and infectious diseases. Their development process however is often brought to a standstill or takes a longer time and is then more expensive due to their hydrophobicity problems. Hydrophobic interactions can cause problems on half-life, drug administration, and immunogenicity at all stages of antibody drug development. Some of the most widely accepted and used technologies for determining the hydrophobic interactions of antibodies include standup monolayer adsorption chromatography (SMAC), salt-gradient affinity-capture self-interaction nanoparticle spectroscopy (SGAC-SINS), and hydrophobic interaction chromatography (HIC). However, to measure SMAC, SGAC-SINS, and HIC for hundreds of antibody drug candidates is time-consuming and costly. To save time and money, a predictor called SSH is developed. Based on the antibody’s sequence only, it can predict the hydrophobic interactions of monoclonal antibodies (mAbs). Using the leave-one-out crossvalidation, SSH achieved 91.226% accuracy, 96.396% sensitivity or recall, 84.196% specificity, 87.754% precision, 0.828 Mathew correlation coefficient (MCC), 0.919 f-score, and 0.961 area under the receiver operating characteristic (ROC) curve (AUC).
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献