Automated Mesiodens Detection with Deep-Learning-Based System Using Cone-Beam Computed Tomography Images

Author:

Syed Ali Zakir1ORCID,Çelik Ozen Duygu2ORCID,Abdelkarim Ahmed Z.3ORCID,Duman Şuayip Burak2ORCID,Bayrakdar İbrahim Şevki4ORCID,Duman Sacide5ORCID,Celik Özer6ORCID,Orhan Kaan7ORCID

Affiliation:

1. Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, School of Dental Medicine, Cleveland, OH, USA

2. Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Inonu University Malatya, Malatya, Turkey

3. Department of Oral and Maxillofacial Radiology, Ohio State University, Columbus, OH, USA

4. Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey

5. Department of Pedodontics, Faculty of Dentistry, Inonu University Malatya, Malatya, Turkey

6. Department of Mathematics-Computer, Eskişehir Osmangazi University, Faculty of Science, Eskişehir, Turkey

7. Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey

Abstract

The detection of mesiodens supernumerary teeth is crucial for appropriate diagnosis and treatment. The study aimed to develop a convolutional neural network (CNN)-based model to automatically detect mesiodens in cone-beam computed tomography images. A datatest of anonymized 851 axial slices of 106 patients’ cone-beam images was used to process the artificial intelligence system for the detection and segmentation of mesiodens. The CNN model achieved high performance in mesiodens segmentation with sensitivity, precision, and F1 scores of 1, 0.9072, and 0.9513, respectively. The area under the curve (AUC) was 0.9147, indicating the model’s robustness. The proposed model showed promising potential for the automated detection of mesiodens, providing valuable assistance to dentists in accurate diagnosis.

Funder

Eskişehir Osmangazi Üniversitesi

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Reference34 articles.

1. Mesiodens-diagnosis and management of a common supernumerary tooth;K. A. Russell;Journal of the Canadian Dental Association,2003

2. Supernumerary Teeth: Review of the Literature with Recent Updates

3. Mesiodens: A clinical and radiographic study in children

4. Anterior supernumerary teeth-assessment and surgical intervention in children;R. E. Primosch;Pediatric Dentistry,1981

5. Mesiodens and its complication in anterior maxilla: A case report

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3