Fault Detection and Classification to Design a Protection Scheme for Utility Grid with High Penetration of Wind and Solar Energy

Author:

Gupta Abhishek1,Pachar Ramesh Kumar1,Mahela Om Prakash23ORCID,Khan Baseem34ORCID

Affiliation:

1. Department of Electrical Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India

2. Power System Planning Division, Rajasthan Rajya Vidyut Prasaran Nigam Limited, Jaipur, India

3. Department of Project Management, Universidad Internacional Iberoamericana, Campeche C.P. 24560, Mexico

4. Department of Electrical and Computer Engineering, Hawassa University, Hawassa, 05, Ethiopia

Abstract

This paper designed a protection scheme for utility grid with high share of renewable energy (RE) generated from wind energy and solar energy plants. This is based on extraction of features from the current using Stockwell transform (ST), Hilbert transform (HT), and alienation coefficient. A Stockwell index (SI) is designed by extracting current features using ST, a Hilbert index (HI) is designed by extracting current features using HT, and an alienation index (AI) is designed by extracting current features using an alienation coefficient. A fault index (FI) is formulated by multiplying the SI, HI, AI, and WF (weight factor). This FI is implemented for fault detection. Fault classification is achieved considering number of fault phases and ground fault index (GFI). This GFI is designed by processing zero sequence currents applying ST. GFI effectively identifies the ground involved during event of a fault. A designed protection scheme is effective to identify faults in the scenario of high RE share and during various cases of study which includes the variations of fault impedance, different fault occurrence angles (FOA), fault incident at different nodes, and noisy condition. This protection scheme effectively discriminates the fault events from the operational events such as feeder operation, load, and capacitor switching. Performance of hybrid protection method formulated in this paper is better relative to alienation coefficient-based protection scheme (ACPS) reported in literature. The ACPS has maximum error and mean error of fault detection equal to 9.54% and 5.99%, respectively, which is relatively high compared to the respective values for the proposed method which are 1.89% and 0.978%, respectively. ACPS is effective for detecting the fault events in noise level of 30 dB SNR (signal-to-noise ratio) whereas the proposed method effectively identifies the faults in the high noise scenario of 20 dB SNR.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3