Experimental Study on the Force Characteristics of Superlong Pile Groups in Silty Sand

Author:

Li Yonghui1ORCID,Zhang Dinghao1ORCID,Liu Yunlong1ORCID,Chen Lujie2ORCID

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China

2. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China

Abstract

Laboratory model testing of single pile and superlong pile groups in saturated silty sand was conducted to investigate the response and bearing behavior of superlong pile groups with a high or low cap under vertical loads. The load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. The load-settlement curve of the loaded superlong pile groups belongs to the type of gradual descent in silty sand. The transferred load decreased along the pile length during loading, but the gradients differed in different positions of the superlong pile group foundation with a high or low cap. The maximum shaft friction of the superlong pile groups with a high and low cap is about 2.5 times and 1.8 times, respectively, than that of the single pile. In addition, the tip resistance of the piles in the pile group foundation is about 2–3.5 times that of the single pile. The friction resistance of the superlong pile group foundation with a low cap was slightly larger than that of the high cap in the entire pile length, and two peaks and one peak, respectively, were observed. Under the ultimate load, the pile-soil maximum relative displacement of the friction on the pile side in the silty sand stratum was about 3% of the pile diameter. Under the ultimate load, the load sharing ratio of the pile side resistance of the two types of pile group foundations was about 60% of the total load. The load sharing ratios at the pile tip of the superlong pile groups with high and low caps are 40% and 33%. Furthermore, equations were proposed to determine the axial capacity of the superlong pile group based on the single pile bearing capacity and were applied to analyze the test pile. The calculated ultimate bearing capacity was similar to the measured value, with a maximum error of only 4.88%, thus validating the proposed method.

Funder

Zhengzhou University

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3