More Than One Disease Process in Chronic Sinusitis Based on Mucin Fragmentation Patterns and Amino Acid Analysis

Author:

Ali Mahmoud El-Sayed12,Pearson Jeffrey P.2

Affiliation:

1. Department of Otolaryngology, Mansoura University Hospital, Mansoura University, Mansoura 35516, Egypt

2. Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

Abstract

Objective. To characterise fragmentation patterns and amino acid composition of MUC2 and MUC5AC in chronic sinusitis.Methods. Antigenic identity of purified sinus mucins was determined by ELISA. Fragmentation patterns of a MUC5AC rich sample mucin were analysed by Sepharose CL-2B gel chromatography. Samples, divided into one MUC2 rich and one MUC5AC rich group, were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and their amino acid contents were analysed.Results. Reduction, trypsin digestion, and papain digestion produced progressively smaller mucin species. On SDS-PAGE, digested MUC5AC rich mucin produced four distinct products. Amino acid analysis was characteristic of mucins with high serine, threonine, and proline contents and reduction and proteolysis increased relative proportions of these amino acids. MUC5AC rich mucins contained more protein than MUC2 rich mucins.Conclusion. Sinus mucin fragmentation produced mucin subunits and glycopeptide units of smaller molecular sizes which are likely to have lower viscoelastic properties. Applying this in vivo could alter mucus physical properties and biologic functions. Amino acid contents of MUC2 and MUC5AC mucins are different. This could be contributing to biological properties and functions of sinus mucins. These data suggest that there may be different pathological processes occurring at the cellular level on chronic sinusitis.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3