Affiliation:
1. Electrical Engineering, Alfaisal University, Riyadh, Saudi Arabia
Abstract
The Safe System (SS) approach to road safety emphasizes safety-by-design through ensuring safe vehicles, road networks, and road users. With a strong motivation from the World Health Organization (WHO), this approach is increasingly adopted worldwide. Considerations in SS, however, are made for the medium-to-long term. Our interest in this work is to complement the approach with a short-to-medium term dynamic assessment of road safety. Toward this end, we introduce a novel, cost-effective Internet of Things (IoT) architecture that facilitates the realization of a robust and dynamic computational core in assessing the safety of a road network and its elements. In doing so, we introduce a new, meaningful, and scalable metric for assessing road safety. We also showcase the use of machine learning in the design of the metric computation core through a novel application of Hidden Markov Models (HMMs). Finally, the impact of the proposed architecture is demonstrated through an application to safety-based route planning.
Funder
King Abdulaziz City for Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献