Effects of Dietary Resveratrol, Bile Acids, Allicin, Betaine, and Inositol on Recovering the Lipid Metabolism Disorder in the Liver of Rare Minnow Gobiocypris rarus Caused by Bisphenol A

Author:

Zhang Yingying1ORCID,Jiang Yinan1,Wang Ziying1,Wang Jiayu1,Zhu Mingzhen1,Yang Hui1ORCID

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract

The fatty liver is one of the main problems in aquaculture. In addition to the nutritional factors, endocrine disrupter chemicals (EDCs) are one of the causes of fatty liver in fish. Bisphenol A (BPA) is a plasticizer widely used in the production of various plastic products and exhibits certain endocrine estrogen effects. Our previous study found that BPA could increase the accumulation of triglyceride (TG) in fish liver by disturbing the expression of lipid metabolism-related genes. How to recover the lipid metabolism disorder caused by BPA and other environmental estrogens remains to be explored. In the present study, Gobiocypris rarus was used as a research model, and 0.01% resveratrol, 0.05% bile acid, 0.01% allicin, 0.1% betaine, and 0.01% inositol were added to the feed of the G. rarus that exposed to 15 μg/L BPA. At the same time, a BPA exposure group without feed additives (BPA group) and a blank group with neither BPA exposure nor feed additives (Con group) were setted. The liver morphology, hepatosomatic index (HSI), hepatic lipid deposition, TG level, and expression of lipid metabolism-related genes were analyzed after 5 weeks of feeding. The HSI in bile acid and allicin groups was significantly lower than that in Con group. The TG in resveratrol, bile acid, allicin, and inositol groups returned to Con level. Principal component analysis of TG synthesis, decomposition, and transport related genes showed that dietary bile acid and inositol supplementation had the best effect on the recovery of BPA-induced lipid metabolism disorder, followed by allicin and resveratrol. In terms of lipid metabolism-related enzyme activity, bile acid and inositol were the most effective in recovering BPA-induced lipid metabolism disorders. The addition of these additives had a restorative effect on the antioxidant capacity of G. rarus livers, but bile acids and inositol were relatively the most effective. The results of the present study demonstrated that under the present dosage, bile acids and inositol had the best improvement effect on the fatty liver of G. rarus caused by BPA. The present study will provide important reference for solving the problem of fatty liver caused by environmental estrogen in aquaculture.

Funder

Jiangsu Agriculture Science and Technology Innovation Fund

Publisher

Hindawi Limited

Subject

Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3