Computational Biology Predicts the Efficacy of Tumor Immune Checkpoint Blockade

Author:

Kang Wenyi1,Tong Yao2,Zhang Weijia1,Jian Mengru1,Zhang Anqi1,Ren Guoqing3,Fan Hao4,Yang Jiyuan1ORCID

Affiliation:

1. Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000 Hubei, China

2. School of Medicine, Wuhan University of Science and Technology, Wuhan, 430061, China

3. Department of Laboratory Medicine, Chuzhou Maternal and Child Health Care and Family Planning Service Center, Chuzhou 239000, China

4. Huanggang Central Hospital of Yangtze University, Huanggang 43800, China

Abstract

Tumor immunotherapy is considered as one of the most promising methods in cancer treatment in recent years. Immune checkpoint blockade (ICB) can activate immune cells to destroy tumors by relieving the inhibitory pathway of tumor cells to immune cells. In silico prediction of the ICB response is an important step toward achieving effective and personalized cancer immunotherapy. Although immune checkpoint inhibitors have shown exciting clinical effects in the treatment of many types of tumors, there are still some clinical problems in practical application, such as low response rate and large individualized differences. How to predict the efficacy of effective individualized immune checkpoint inhibitors for tumor patients based on specific biomarkers and computational models is one of the key issues in the immunotherapy of this kind of tumor. In our work, from the five levels of genome level, transcription level, epigenetic level, microbial taxonomy level, and the immune cell infiltration profile level, the biomarkers and in silico calculation methods that affect the efficacy of tumor immune checkpoint inhibitors are comprehensively summarized.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3