Features Conduction Neural Response and Its Application in Content-Based Image Retrieval

Author:

Hu Zhengfa1,Yue Tian1ORCID,Xiao Haixia12

Affiliation:

1. Department of Sciences, Hubei University of Automotive Technology, Shiyan, Hubei 442002, China

2. School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Abstract

A novel image representation is proposed for content-based image retrieval (CBIR). The core idea of the proposed method is to do deep learning for the local features of image and to melt semantic component into the representation through a hierarchical architecture which is built to simulate human visual perception system, and then a new image descriptor of features conduction neural response (FCNR) is constructed. Compared with the classical neural response (NR), FCNR has lower computational complexity and is more suitable for CBIR tasks. The results of experiments on a commonly used image database demonstrate that, compared with those of NR related methods or some other image descriptors that were originally developed for CBIR, the proposed method has wonderful performance on retrieval efficiency and effectiveness.

Funder

Educational Commission of Hubei Province of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1.

The Blood Biomarkers of Thyroid Cancer

;Cancer Management and Research;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3