COCO: Coherent Consensus Schema For Dynamic Spectrum Allocation For 5G

Author:

Babu C. Rajesh1ORCID,Ramana Kadiyala2,Jeya R.3ORCID,Srinivasulu Asadi4ORCID

Affiliation:

1. Department of Network and Communications, SRM Institute of Science and Technology, Chennai, India

2. Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, India

3. Department of Computing Technologies, SRM Institute of Science and Technology, Chennai, India

4. Data Science Research Lab, BlueCrest University, Monrovia, Liberia

Abstract

Numerous wireless technologies have been integrated to provide 5th generation (5G) communication networks capable of delivering mission-critical applications and services. Despite considerable developments in a variety of supporting technologies, next-generation cellular deployments may still face severe bandwidth constraints as a result of inefficient radio spectrum use. To this end, a variety of appropriate frameworks have recently emerged that all aid mobile network operators (MNOs) in making effective use of the abundant frequency bands that other incumbents reserve for their own use. The proposed COCO model for Dynamic Spectrum Allocation (DSA) has 2 functionalities such as 1. Coherent PU-SU packet acceptance algorithm for Secondary User (SU) in DSA. 2. Consensus Algorithm for PU-SU Channel Reservation in DSA. To enable a 5G service with one-millisecond latency, interconnection ports between operators are expected to be required at every base station, which would have a significant influence on the topological structure of the core network. Additionally, just one radio network infrastructure would need to be created, which all operators would then be able to use. We allow change of PU SU characteristics to satisfy the needs of new services. These modifications are accomplished via the use of Coherent and Consensus Algorithms that regulate PU and SU through negotiation and allocation procedures. Our primary objective was to decrease interference, handoff latency, and the chance of blocking. In this paper, we describe our idea for employing COCO Model to address the issues of spectrum mobility, sharing, and handoff for Cognitive Radio Networks in 5G.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3