Video Analysis and System Construction of Basketball Game by Lightweight Deep Learning under the Internet of Things

Author:

Yang Tianyu1,Jiang Congmeng2ORCID,Li Pengfei3

Affiliation:

1. Department of Physics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

2. Postgraduate School, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

3. Department of Information Engineering, Qinhuangdao Vocational and Technical College, Qinhuangdao 066100, China

Abstract

With the explosive growth of sports video data on the internet platform, how to scientifically manage this information has become a major challenge in the current big data era. In this context, a new lightweight player segmentation algorithm is proposed to realize the automatic analysis of basketball game video. Firstly, semantic events are expressed by extracting group and global motion features. A complete basketball game video is divided into three stages, and a basketball event classification method integrating global group motion patterns and domain knowledge is proposed. Secondly, a player segmentation algorithm based on lightweight deep learning is proposed to detect basketball players, segment the players, and finally extract players’ spatial features based on deep learning to realize players’ pose estimation. As the experimental results indicate, when a proposed 2-stage classification algorithm is used to classify the videos, the accuracy of identifying layup, the shooting, and other 2-pointers are improved by 21.26% and 6.41%, respectively. And the accuracy of average events sees an improvement of 2.74%. The results imply that the 2-stage classification based on event-occ is effective. After comparing the four methods of classifying players, it is found that there is no significant difference among these four methods about the accuracy of segmenting. Nevertheless, when judged with the time that these methods take separately, FCN-CNN (Fully Convolutional Network-Convolutional Neural Network) based on superpixels has overwhelming advantages. The event analysis method of basketball game video proposed here can realize the automatic analysis of basketball video, which is beneficial to promoting the rapid development of basketball and even sports.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3