An Image Deblurring Method Using Improved U-Net Model

Author:

Lian Zuozheng1ORCID,Wang Haizhen1ORCID,Zhang Qianjun1

Affiliation:

1. College of Computer and Control Engineering, Qiqihar University, Qiqihar, China

Abstract

Deblurring methods in dynamic scenes are a challenging problem. Recently, significant progress has been made for image deblurring methods based on deep learning. However, these methods usually stack ordinary convolutional layers or increase convolution kernel size, resulting in limited receptive fields, an unsatisfying deblurring effect, and a heavy computational burden. Therefore, we propose an improved U-Net (U-shaped Convolutional Neural Network) model to restore the blurred images. We first design the model structure, which mainly includes depth-wise separable convolution, residual depth-wise separable convolution, wavelet transform, inverse wavelet transform, and a DMRFC (dense multireceptive field channel) module. Next, a depth-wise separable convolution is designed, which reduces model calculations and the number of parameters when compared with the standard convolution. A residual depth-wise separable convolution is designed, which allows for propagation of detailed information from different layers when compared with standard convolution and a standard residual block. The wavelet transform realizes downsampling by separating the contextual and texture information of the image. It also reduces model training difficulty. The inverse wavelet transform realizes upsampling, which reduces the loss of image information. Finally, by combining an extensional receptive field and channel attention mechanism, a DMRFC module is proposed to extract detailed image information, which further improves the reconstructed image quality via inverse wavelet transform. Experiments on the public dataset GOPRO show that the image deblurring method in this paper has higher-quality visual effects, while the PSNR (peak signal-to-noise ratio) rises to 30.83 and SSIM (structural similarity) rises to 0.948. Fewer model parameters and a shorter recovery time are needed, which provides a more lightweight image deblurring method.

Funder

Department of Education, Heilongjiang Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3