Uncertain Analysis of a Stationary Solar Compound Parabolic Concentrator PV Collector System Using Fuzzy Set Theory

Author:

Lee Hoe-Gil1ORCID,Rao Singiresu S.2

Affiliation:

1. Department of Engineering and Computer Science, Tarleton State University, Stephenville, TX 76402, USA

2. Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA

Abstract

The uncertain analysis of fixed solar compound parabolic concentrator (CPC) collector system is investigated for use in combination with solar PV cells. Within solar CPC PV collector systems, any radiation within the collector acceptance angle enters through the aperture and finds its way to the absorber surface by multiple internal reflections. It is essential that the design of any solar collector aims to maximize PV performance since this will elicit a higher collection of solar radiation. In order to analyze uncertainty of the solar CPC collector system in the optimization problem formulation, three objectives are outlined. Seasonal demands are considered for maximizing two of these objectives, the annual average incident solar energy and the lowest month incident solar energy during winter; the lowest cost of the CPC collector system is approached as a third objective. This study investigates uncertain analysis of a solar CPC PV collector system using fuzzy set theory. The fuzzy analysis methodology is suitable for ambiguous problems to predict variations. Uncertain parameters are treated as random variables or uncertain inputs to predict performance. The fuzzy membership functions are used for modeling uncertain or imprecise design parameters of a solar PV collector system. Triangular membership functions are used to represent the uncertain parameters as fuzzy quantities. A fuzzy set analysis methodology is used for analyzing the three objective constrained optimization problems.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3