Affiliation:
1. College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
2. Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
Abstract
Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.
Funder
Natural Science Foundation of Shanghai
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献