Multiperiod-Ahead Wind Speed Forecasting Using Deep Neural Architecture and Ensemble Learning

Author:

Chen Lei12,Li Zhijun1ORCID,Zhang Yi3

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China

2. Graduate School, North China University of Science and Technology, Tangshan, Hebei Province 063210, China

3. College of Electrical Engineering, North China University of Science and Technology, Tangshan, Hebei Province 063210, China

Abstract

Accurate forecasting of wind speed plays a fundamental role in enabling reliable operation and planning for large-scale integration of wind turbines. It is difficult to obtain the accurate wind speed forecasting (WSF) due to the intermittent and random nature of wind energy. In this paper, a multiperiod-ahead WSF model based on the analysis of variance, stacked denoising autoencoder (SDAE), and ensemble learning is proposed. The analysis of variance classifies the training samples into different categories. The stacked denoising autoencoder as a deep learning architecture is later built for unsupervised feature learning in each category. The ensemble of extreme learning machine (ELM) is applied to fine-tune the SDAE for multiperiod-ahead wind speed forecasting. Experimental results are made to demonstrate that the proposed model has the best performance compared with the classic WSF methods including the single SDAE-ELM, ELMAN, and adaptive neuron-fuzzy inference system (ANFIS).

Funder

National Natural Science Foundation of China:

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3