Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse

Author:

Doğan-Sağlamtimur Neslihan1ORCID

Affiliation:

1. Department of Environmental Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey

Abstract

In order to bring a solution to the problem of waste foundry sand (WFS) in the foundry sector and achieve its reuse, geopolymer building material (as a cementless technology) was produced from the WFS for the first time in the literature in this study. The physical and mechanical characteristics of this material were determined. In the first part of the experimental step, the sieve analysis, loose/tight unit weight, and loss of ignition of the WFS were obtained as well as the ultimate analysis. In the second step, the water absorption percentage, porosity, unit weight, and compressive strength tests were conducted on the WFS-based geopolymer specimens activated by chemical binders (sodium hydroxide: NaOH and sodium silicate: Na2SiO3). As the unit weights of all the produced samples were lower than 1.6 g/cm3, they may be considered as lightweight building materials. The minimum compressive strength value for building wall materials was accepted as 2.5 MPa by national standards. In this study, the maximum compressive strength value was measured as 12.3 MPa for the mixture incorporation of 30% Na2SiO3 at the curing temperature of 200°C in 28 days. It was concluded that this geopolymer material is suitable for using as a building wall material.

Funder

Türkiye Bilimsel ve Teknolojik Arastirma Kurumu

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3