Experimental Study of Dynamic Mechanics Characteristics of Saturated Marble under Low Temperature

Author:

Yang Yang1ORCID,Wang Jianguo2ORCID

Affiliation:

1. School of Civil and Recourses Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

Abstract

The effect of low temperature on dynamic mechanical properties of low-temperature frozen marble at a high strain rate was studied by a dynamic impact test. The influence of temperature changes (25°C–40°C), especially negative temperature changes, on dynamic strength, peak strain, and failure mode of the marble was analyzed. Combined with the fracture morphology, the reasons for the deterioration of dynamic mechanical strength of water-saturated marble at lower negative temperatures were investigated. The experimental results show that the dynamic mechanical properties of marble are significantly affected by the change of freezing temperature. The dynamic strength firstly decreases and then increases with the decrease of temperature in the range of 25°C to −20°C, but the dynamic strength decreases sharply after −20°C. The peak strain increases first, then decreases, and then increases, and the inflection point temperature of the change is −5°C and −20°C, respectively, which is completely different from the static load test results of frozen rock at low temperature. According to fracture morphology analysis, water-ice phase transformation at −5°C leads to the nucleation and expansion of a large number of microcracks and micropores in marble, and the interaction between slip separation cracks and microstructures caused by shear deformation under impact separates the massive crystals inside the rock into microscopic crystals, thus reducing the bearing capacity and strength of marble. From −5°C to −20°C, the ice medium and marble matrix contract when cooled, and the microcracks and micropores caused by the phase transition gradually close during the contraction process, the integrity of the rock is restored, and the dynamic strength of the rock is increased. At −20°C, there is a great difference in the shrinkage rate of the marble matrix and the ice medium, and the internal microstructure increases. Meanwhile, the impact amplifies the brittleness of the rock at low temperatures, leading to a sharp decrease in the dynamic strength of the marble.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference34 articles.

1. A research review of international permafrost engineering;G. D. Chen;Journal of Glaciology and Geocryology,2003

2. From hot to cold - The temperature dependence on rock deformation processes: An introduction

3. The effect of meso-structure on temperature distribution in shale subject to freeze-thaw conditions

4. A Study on the damage propagation characteristics of rock under the frost and thaw condition;G. S. Yang;Chinese Journal of Geotechnical Engineering,2004

5. Experimental study on basic mechanical behaviors of sandy mudstone under low freezing temperature;J. M. Xi;Journal of China Coal Society,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3