Complexity of Some Generalized Operations on Networks

Author:

Javaid Muhammad1ORCID,Afzal Hafiz Usman1,Wang Shaohui2ORCID

Affiliation:

1. Department of Mathematics, School of Science, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Mathematics, Louisiana College, Pineville, LA 71359, USA

Abstract

The number of spanning trees in a network determines the totality of acyclic and connected components present within. This number is termed as complexity of the network. In this article, we address the closed formulae of the complexity of networks’ operations such as duplication (split, shadow, and vortex networks of S n ), sum ( S n + W 3 , S n + K 2 , and C n K 2 + K 1 ), product ( S n K 2 and W n K 2 ), semitotal networks ( Q S n and R S n ), and edge subdivision of the wheel. All our findings in this article have been obtained by applying the methods from linear algebra, matrix theory, and Chebyshev polynomials. Our results shall also be summarized with the help of individual plots and relative comparison at the end of this article.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3