Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19

Author:

Qaid Talal S.12,Mazaar Hussein3ORCID,Al-Shamri Mohammad Yahya H.45,Alqahtani Mohammed S.67,Raweh Abeer A.12,Alakwaa Wafaa3

Affiliation:

1. Computer Science Department, College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

2. Faculty of Computer Science and Engineering, Hodeidah University, Hodeidah, Yemen

3. Computer Science Department, College of Science and Arts in Tanumah, King Khalid University, Abha 61421, Saudi Arabia

4. Computer Engineering Department, College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

5. Electrical Engineering Department, Faculty of Engineering, Ibb University, Ibb, Yemen

6. Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia

7. BioImaging Unit, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

Abstract

The COVID-19 pandemic has had a significant impact on public life and health worldwide, putting the world’s healthcare systems at risk. The first step in stopping this outbreak is to detect the infection in its early stages, which will relieve the risk, control the outbreak’s spread, and restore full functionality to the world’s healthcare systems. Currently, PCR is the most prevalent diagnosis tool for COVID-19. However, chest X-ray images may play an essential role in detecting this disease, as they are successful for many other viral pneumonia diseases. Unfortunately, there are common features between COVID-19 and other viral pneumonia, and hence manual differentiation between them seems to be a critical problem and needs the aid of artificial intelligence. This research employs deep- and transfer-learning techniques to develop accurate, general, and robust models for detecting COVID-19. The developed models utilize either convolutional neural networks or transfer-learning models or hybridize them with powerful machine-learning techniques to exploit their full potential. For experimentation, we applied the proposed models to two data sets: the COVID-19 Radiography Database from Kaggle and a local data set from Asir Hospital, Abha, Saudi Arabia. The proposed models achieved promising results in detecting COVID-19 cases and discriminating them from normal and other viral pneumonia with excellent accuracy. The hybrid models extracted features from the flatten layer or the first hidden layer of the neural network and then fed these features into a classification algorithm. This approach enhanced the results further to full accuracy for binary COVID-19 classification and 97.8% for multiclass classification.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3