Channel Measurement for Multiple Frequency Bands in Subway Tunnel Scenario

Author:

Hu Zhuomin1ORCID,Ji Wenli2,Zhao Hengkai1ORCID,Zhai Xuping1,Saleem Asad3ORCID,Zheng Guoxin1ORCID

Affiliation:

1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joiny International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China

2. System Integration Department, Technical Center, Shanghai Shentong Metro Group Co.,Ltd, Shanghai 201103, China

3. Guangdong Engineering Research Center of Base Station Antennas and Propagation, Key Laboratory of Antennas and Propagation, Shenzhen University, Shenzhen 518000, China

Abstract

In next-generation radio communication systems, the use of higher frequency bands and the massive multiple-input-multiple-output (MIMO) systems has turned into hot research topics because they have the potential to increase network capacity significantly by exploiting the available narrowband and broadband spectrums. Therefore, the narrowband channel measurements are executed at the following five potential frequency bands, including 2.6 GHz, 3.5 GHz, 5.6 GHz, 10 GHz, and 28 GHz in the Shanghai subway tunnel environment in order to fulfill the latest standards of fifth generation (5G). Moreover, in the broadband channel measurements, the center frequency is 3.5 GHz and 5.6 GHz and the bandwidth is considered as 160 MHz, respectively. At the transmitter (Tx) side, a uniform rectangular antenna array composed of 32 elements is fixed on the platform near the tunnel walls. The receiver (Rx) is equipped with a uniform cylindrical antenna array consisting of 64 elements, which is set on a trolley along the track. Based on the acquired massive MIMO channel impulse responses, delay spread, angle spread, eigenvalue and channel capacity are analyzed. The results reveal that the multipath delay in the tunnel scenario is quite short, the delay spread and angle spread drop rapidly as the distance between Tx and Rx increases and the channel matrix gradually becomes serious. This research provides a reference for the deployment of future 5G systems in the subway tunnel.

Funder

National Natural Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3