TMIGD1 Inhibited Abdominal Adhesion Formation by Alleviating Oxidative Stress in the Mitochondria of Peritoneal Mesothelial Cells

Author:

Wu Yunhua12ORCID,Li Enmeng1ORCID,Wang Zijun1ORCID,Shen Tianli1ORCID,Shen Cong3ORCID,Liu Dong2ORCID,Gao Qiuying4ORCID,Li Xuqi15ORCID,Wei Guangbing1ORCID

Affiliation:

1. Department of General Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xian, 710061 Shaanxi, China

2. Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, 710061 Shaanxi, China

3. Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, 710061 Shaanxi, China

4. Department of Haematology, Shaanxi Provincial People’s Hospital, Xi’an, 710061 Shaanxi, China

5. Department of Talent Highland, The First Affiliated Hospital of Xian Jiaotong University, Xian, 710061 Shaanxi, China

Abstract

Background. Postoperative abdominal adhesion remains one of the frequent complications after abdominal surgery and lacks effective intervention. Peritoneal mesothelial cell injury and healing play crucial roles in the process of adhesion formation, and identifying this mechanism might provide new insight into possible new therapeutic strategies for this disease. Transmembrane and immunoglobulin domain-containing 1 (TMIGD1) has been proven to protect renal epithelial cells from injury induced by oxidative stress and has also been identified as a novel adhesion molecule. Here, we investigated the role of TMIGD1 and its possible mechanism in adhesion formation. Materials and Methods. Immunohistochemistry (IHC), qPCR, and immunofluorescence (IHF) were used to detect the expression of TMIGD1. The grade and tenacity score of adhesion were used to evaluate the adhesion formation conditions. A TMIGD1-overexpressing HMrSV5 cell line was established. MTT assay, Western blotting, Annexin V apoptosis analysis, and CK19 staining were used to measure mesothelial cell viability, apoptosis, and completeness. ROS and MDA detection were used to measure mesothelial cell oxidative stress levels. JC-1 staining, IHF, and transmission electron microscopy were performed to assess mitochondrial function. Scratch-wound and adhesion assays were used to evaluate the adhesion ability of mesothelial cells. Results. First, we showed that TMIGD1 was decreased in mouse abdominal adhesion tissue and peritoneal mesothelial cells. Second, TMIGD1 overexpression inhibited adhesion formation. Third, TMIGD1 overexpression protected mesothelial cells from hydrogen peroxide- (H2O2-) induced oxidative stress injury. Fourth, TMIGD1 overexpression alleviated oxidative stress by protecting the mitochondrial function of mesothelial cells. In addition, TMIGD1 overexpression enhanced mesothelial cell adhesion. Conclusion. Our findings suggest that TMIGD1 protects mesothelial cells from oxidative stress injury by protecting their mitochondrial function, which is decreased in regular abdominal adhesion tissue. In addition, TMIGD1 enhances peritoneal mesothelial cell adhesion to promote healing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3