Main Rotor Wake Interference Effects on Tail Rotor Thrust in Crosswind

Author:

Wang Chang1,Huang Min Qi2,Ma Shuai2ORCID,Wang Hao Wen3,Tang Min2

Affiliation:

1. Tsinghua University & China Aerodynamics Research and Development Center, China

2. China Aerodynamics Research and Development Center, China

3. Tsinghua University, China

Abstract

Reverse pedal operational property in front crosswind flight condition is a potential hazard for accidents involving loss of tail rotor effectiveness (LTE), which is closely related to the main rotor (MR) wake interference on the tail rotor (TR). As understanding of this interaction is vital for the early warning strategy development, the MR wake influence effect on TR thrust and the effect of helicopter yaw stability are examined in this study. For this purpose, the comparison of TR thrust and flow field with wind azimuth and speed in front crosswind environment was performed by experiment and CFD simulation, respectively. Test campaign was performed at a 5.5 m × 4 m wind tunnel in the China Aerodynamics Research and Development Center using a high-position bottom-blade forward-rotating TR and a counterclockwise rotating MR to address the TR thrust under wind speeds of 8–22 m/s with 50°, 60°, and 70° wind azimuths. The influence of MR disc loading was also contrasted. CFD analysis was used to gain insight into the flow physics responsible for the interference effect. It was conducted with unsteady Reynolds-averaged Navier–Stokes simulations, where the MR using the actuator disk approach and the TR blade rotation was modeled via a sliding mesh method. Results indicated that the MR disc vortex has a remarkable interference effect on the TR aerodynamic performance characteristic and that the effect is sensitive to the wind speed, wind direction, and MR disc loading. The observed yaw instability is considered to be related to the lesser inflow introduced by the MR disc vortex due to the change in the relative position of the disc vortex filament and TR with the wind azimuth. The increase in TR thrust at moderate wind speeds is due to the increase in leading edge dynamic pressure caused by the opposite swirl direction of the disc vortex contrasted to the TR. The MR disc loading affects the TR thrust due to the change of disc vortex strength and position.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference32 articles.

1. DuganD. C.DelamerK. J.The implications of handling qualities in civil helicopter accidents involving hover and low speed flight2005NASA Technical Memorandum

2. Federal Aviation AdministrationUnanticipated right yaw in helicopters1995Federal Aviation AdministrationAdvisory circular

3. Loss of tail rotor effectiveness in helicopters2017NTSB Safety Alert

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3