A Review of the Material Characteristics, Antifreeze Mechanisms, and Applications of Cryoprotectants (CPAs)

Author:

Liu Xiangjian1,Pan Yuxin1,Liu Fenglin1,He Yongju2,Zhu Qubo1,Liu Zhaolin3,Zhan Xuehui4ORCID,Tan Songwen1ORCID

Affiliation:

1. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China

2. School of Materials Science and Engineering, Central South University, Changsha 410013, China

3. Department of Dermatology, Xinhua People’s Hospital, Loudi 417600, China

4. School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Cryopreservation has been a key technology in medical science, food preservation, and many other fields. In a freezing process, the formation of ice crystals may cause significant damage to the frozen samples. In order to reduce the damage, many cryoprotectants (CPAs) have been developed and added in cryopreservation processes for reduced ice volume, decreased ice size, proper ice shaping, and cell protection. According to the material characteristics, the CPAs are either impermeable (i.e., antifreeze protein, polyampholytes, and polyvinyl alcohol) or permeable (i.e., dimethyl sulfoxide, proline, and glycerol) to cell membranes. The typical CPAs are introduced in this work with their material characteristics, antifreeze mechanisms, and applications. Antifreeze mechanisms for different CPAs involve molecular adsorption on the ice surface, hydrogen bonding to ice, bending the ice surface, lowering the freezing point, inhibiting ice recrystallization, protecting cell membranes, reducing dehydration of cells, and breaking hydrogen bonds among ice crystals to reduce the size of ice crystals. In practice, different CPAs can be used together with their cryopreservation properties functioning synergetically. This study reviews the recent applications of CPAs in food, biology and medicine, and agriculture. Future works for CPAs are suggested in improving efficiency, revealing mechanisms, broadening application, and finding new CPAs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3