Optimizing Computer Worm Detection Using Ensembles

Author:

Ochieng Nelson1ORCID,Mwangi Waweru2,Ateya Ismail1

Affiliation:

1. Strathmore University, Kenya

2. Jomo Kenyatta University of Agriculture and Technology, Kenya

Abstract

The scope of this research is computer worm detection. Computer worm has been defined as a process that can cause a possibly evolved copy of it to execute on a remote computer. It does not require human intervention to propagate neither does it attach itself to an existing computer file. It spreads very rapidly. Modern computer worm authors obfuscate the code to make it difficult to detect the computer worm. This research proposes to use machine learning methodology for the detection of computer worms. More specifically, ensembles are used. The research deviates from existing detection approaches by using dark space network traffic attributed to an actual worm attack to train and validate the machine learning algorithms. It is also obtained that the various ensembles perform comparatively well. Each of them is therefore a candidate for the final model. The algorithms also perform just as well as similar studies reported in the literature.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hierarchical based ensemble classifier for behavioral malware detection using machine learning;2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST);2022-08-16

2. Joint detection and classification of signature and NetFlow based internet worms using MBGWO-based hybrid LSTM;Journal of Computer Virology and Hacking Techniques;2022-08-10

3. Deep Learning CNN Framework for Detection and Classification of Internet Worms;Journal of Interconnection Networks;2022-02-14

4. Deep learning algorithms for cyber security applications: A survey;Journal of Computer Security;2021-08-26

5. Towards Optimization of Malware Detection using Chi-square Feature Selection on Ensemble Classifiers;International Journal of Engineering and Advanced Technology;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3