Prediction of Mechanical Strength of Fiber Admixed Concrete Using Multiple Regression Analysis and Artificial Neural Network

Author:

Karthiyaini S.1ORCID,Senthamaraikannan K.2ORCID,Priyadarshini J.3,Gupta Kamal1,Shanmugasundaram M.1ORCID

Affiliation:

1. School of Mechanical and Building Sciences, Vellore Institute of Technology-Chennai Campus, Chennai-600127, Tamilnadu, India

2. Department of Civil and Architectural Engineering, Al Musanna College of Technology, Muladdah Musanna, Oman

3. School of Computing Science and Engineering, Vellore Institute of Technology-Chennai Campus, Chennai-600127, Tamilnadu, India

Abstract

The present study is to compare the multiple regression analysis (MRA) model and artificial neural network (ANN) model designed to predict the mechanical strength of fiber-reinforced concrete on 28 days. The model uses the data from early literatures; the data consist of tensile strength of fiber, percentage of fiber, water/cement ratio, cross-sectional area of test specimen, Young’s modulus of fiber, and mechanical strength of control specimen, and these were used as the input parameters; the respective strength attained was used as the target parameter. The models are created and are used to predict compressive, split tensile, and flexural strength of fiber admixed concrete. These models are evaluated through the statistical test such as coefficient of determination (R2) and root mean squared error (RMSE). The results show that these parameters produce a valid model through both MRA and ANN, and this model gives more precise prediction for the fiber admixed concrete.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3