Optimization of Solar Energy Harvesting: An Empirical Approach

Author:

Almusaied Zaid1,Asiabanpour Bahram1ORCID,Aslan Semih1

Affiliation:

1. Ingram School of Engineering, Texas State University, San Marcos, TX, USA

Abstract

Renewable energy is the path for a sustainable future. The development in this field is progressing rapidly and solar energy is at the heart of this development. The performance and efficiency limitations are the main obstacles preventing solar energy from fulfilling its potential. This research intends to improve the performance of solar panels by identifying and optimizing the affecting factors. For this purpose, a mechanical system was developed to hold and control the tilt and orientation of the photovoltaic panel. A data acquisition system and electrical system were built to measure and store performance data of the photovoltaic panels. A design of experiments and Response Surface Methodology were used to investigate the impact of these factors on the yield response as well as the output optimization. The findings of the experiment showed an optimum result with a tilt of 60° from the horizon, an azimuth angel of 45° from the south, and a clean panel condition. The wind factor showed insignificant impact within the specified range.

Funder

US Department of Education MSEIP program

Publisher

Hindawi Limited

Reference22 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3