Dichotomies with No Invariant Unstable Manifolds for Autonomous Equations

Author:

Moşincat Răzvan O.1,Preda Ciprian2ORCID,Preda Petre1

Affiliation:

1. Department of Mathematics, West University of Timişoara, Building V. Pârvan, No. 4, 300223 Timişoara, Romania

2. Department of Mathematics, Cornell University, 310 Malott Hall, Ithaca, NY 14853, USA

Abstract

We analyze the existence of (no past) exponential dichotomies for a well-posed autonomous differential equation (that generates aC0-semigroup ). The novelty of our approach consists in the fact that we do not assume theT(t)-invariance of the unstable manifolds. Roughly speaking, we prove that if the solution of the corresponding inhomogeneous difference equation belongs to any sequence space (on which the right shift is an isometry) for every inhomogeneity from the same class of sequence spaces, then the continuous-time solutions of the autonomous homogeneous differential equation will exhibit a (no past) exponential dichotomic behavior. This approach has many advantages among which we emphasize on the facts that the aforementioned condition is very general (since the class of sequence spaces that we use includes almost all the known sequence spaces, as the classical spaces, sequence Orlicz spaces, etc.) and that from discrete-time conditions we get information about the continuous-time behavior of the solutions.

Publisher

Hindawi Limited

Subject

Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3