Power Generation from Human Leukocytes/Lymphocytes in Mammalian Biofuel Cell

Author:

Güven Güray1,Lozano-Sanchez Pablo2,Güven Arcan3

Affiliation:

1. Conductive Technologies Inc., New Product Research & Development, 935 Borom Road, York, PA 17404, USA

2. Integrated Microsystems for the Quality of Life S.L., C/del Ferro 6, Nave 7, 43006 Tarragona, Spain

3. Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA

Abstract

Alternative to batteries power sources is needed for the human implants of the future that tend to be less invasive and more integrated to human biology and physiology. Human metabolism could be exploited for the generation of power, but mammalian cells protect their energy production apparatus from external electrochemical scavengers. We report here evidence that, in the case of white blood cells, chemical energy can be harvested directly on an electrode as electricity in fuel cells whose stability is roughly parallel to the viability of cells in vitro. Electrochemical activity of human leukocytes immobilized on modified carbon mesh electrodes was investigated by cyclic voltammetry. Oxidation peaks at 0.33 V versus Ag/AgCl were observed. An open-circuit potential of 0.44 V was recorded between anode and cathode compartments where the biofuel cell potential operating under an external load of 5 kΩ was below 0.35 V. Average power outputs of 10 μW (2.4×10-6μW/cell) were increased to 15 μW by the activation of white blood cells. Power densities of 1.5 μW cm−2for lower than physiological cell concentrations are low for most of today’s implants, but possibility of cell immobilization allows a positive outlook for the future utility of the reported findings.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3