Modeling of the Radial Heat Flow and Cooling Processes in a Deep UltravioletCu+Ne-CuBr Laser

Author:

Iliev Iliycho Petkov1,Gocheva-Ilieva Snezhana Georgieva2,Temelkov Krassimir Angelov3,Vuchkov Nikolay Kirilov3,Sabotinov Nikola Vassilev3

Affiliation:

1. Department of Physics, Technical University of Plovdiv, 25 Tzanko Djusstabanov Street, 4000 Plovdiv, Bulgaria

2. Department of Applied Mathematics and Modeling, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria

3. Metal Vapour Lasers Department, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shaussee Boulevard, 1784 Sofia, Bulgaria

Abstract

An improved theoretical model of the gas temperature profile in the cross-section of an ultraviolet copper ion excited copper bromide laser is developed. The model is based on the solution of the one-dimensional heat conduction equation subject to special nonlinear boundary conditions, describing the heat interaction between the laser tube and its surroundings. It takes into account the nonuniform distribution of the volume power density along with the radius of the laser tube. The problem is reduced to the boundary value problem of the first kind. An explicit solution of this model is obtained. The model is applied for the evaluation of the gas temperature profiles of the laser in the conditions of free and forced air-cooling. Comparison with other simple models assumed constant volume power density is made. In particular, a simple expression for calculating the average gas temperature is found.

Funder

Bulgarian Ministry of Education and Science

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3