Denoising Method of MEMS Gyroscope Based on Interval Empirical Mode Decomposition

Author:

Liu Yang12ORCID,Chen Guangwu12ORCID,Wei Zongshou12,Yang Juhua12ORCID,Xing Dongfeng12

Affiliation:

1. Automatic Control Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Plateau Traffic Information Engineering and Control of Gansu Provincial, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

The microelectromechanical system (MEMS) gyroscope has low measurement accuracy and large output noise; the useful signal is often submerged in the noise. A new denoising method of interval empirical mode decomposition (IEMD) is proposed. Firstly, the traditional EMD algorithm is used to decompose the signal into a finite number of intrinsic mode functions (IMFs). Based on the Bhattacharyya distance analysis and the characteristics of the autocorrelation function, a screening mechanism is proposed to divide IMFs into three categories: noise IMFs, mixed IMFs, and signal IMFs. Then, the traditional modelling filtering method is used to filter the mixed IMFs. Finally, the mixed IMFs after modelling and filtering and signal IMFs are reconstructed to obtain the denoised signal. In the experimental analysis, the static denoising experiment of the turntable, the Allan variance analysis, dynamic denoising experiment, and vehicle experiment are set up in this paper, which fully proves that the method has obvious advantages in denoising and greatly improves the quality of signal and the accuracy of the inertial navigation system solution.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3