A Genetic Simulated Annealing Algorithm to Optimize the Small-World Network Generating Process

Author:

Du Haifeng1ORCID,Fan Jiarui1,He Xiaochen1ORCID,Feldman Marcus W.12ORCID

Affiliation:

1. Center for Administration and Complexity Science of Xi’an Jiaotong University, Xi’an, Shanxi Province 710049, China

2. Morrison Institute for Population and Resource Studies, Stanford University, Stanford, CA 94305, USA

Abstract

Network structure is an important component of analysis in many parts of the natural and social sciences. Optimization of network structure in order to achieve specific goals has been a major research focus. The small-world network is known to have a high average clustering coefficient and a low average path length. Previous studies have introduced a series of models to generate small-world networks, but few focus on how to improve the efficiency of the generating process. In this paper, we propose a genetic simulated annealing (GSA) algorithm to improve the efficiency of transforming other kinds of networks into small-world networks by adding edges, and we apply this algorithm to some experimental systems. In the process of using the GSA algorithm, the existence of hubs and disassortative structure is revealed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3