Research on Online Social Network Information Leakage-Tracking Algorithm Based on Deep Learning

Author:

Han Shuhe1ORCID

Affiliation:

1. School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong, Jiangsu 226010, China

Abstract

The rapid iteration of information technology makes the development of online social networks increasingly rapid, and its corresponding network scale is also increasingly large and complex. The corresponding algorithms to deal with social networks and their corresponding related problems are also increasing. The corresponding privacy protection algorithms such as encryption algorithm, access control strategy algorithm, and differential privacy protection algorithm have been studied and analyzed, but these algorithms do not completely solve the problem of privacy disclosure. Based on this, this article first searches and accurately filters the relevant information and content of online social networks based on the deep convolution neural network algorithm, so as to realize the perception and protection of users’ safe content. For the corresponding graphics and data, this article introduces the compressed sensing technology to randomly disturb the corresponding graphics and data. At the level of tracking network information leakage algorithm, this article proposes a network information leakage-tracking algorithm based on digital fingerprint, which mainly uses relevant plug-ins to realize the unique identification processing of users, uses the uniqueness of digital fingerprint to realize the tracking processing of leakers, and formulates the corresponding coding scheme based on the social network topology, and at the same time, the network information leakage-tracking algorithm proposed in this article also has high efficiency in the corresponding digital coding efficiency and scalability. In order to verify the advantages of the online social network information leakage-tracking algorithm based on deep learning, this article compares it with the traditional algorithm. In the experimental part, this article mainly compares the accuracy index, recall index, and performance index. At the corresponding accuracy index level, it can be seen that the maximum improvement of the algorithm proposed in this article is about 10% compared with the traditional algorithm. At the corresponding recall index level, the proposed algorithm is about 5–8% higher than the traditional algorithm. Corresponding to the overall performance index, it improves the performance by about 50% compared with the traditional algorithm. The comparison results show that the proposed algorithm has higher accuracy and the corresponding source tracking is more accurate.

Funder

Universities’philosophy and Social Science Researches in Jiangsu Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3