A Low-Complexity Direction-of-Arrival Estimation Algorithm for Noncircular Signals via Subspace Rotation Technique

Author:

Wang Wei1ORCID,Zhang Ming2,Yao Bobin3,Zheng Tongxing4,Fan Xiaojiao1

Affiliation:

1. School of Computer Science, XiJing University, Xi’an 710123, China

2. Xi’an Microelectronics Technology Institute, Xi’an 710000, China

3. School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China

4. School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

In this paper, we investigate the problem of the heavy computational burden of the direction-of-arrival (DoA) estimation for the noncircular (NC) signals. A novel low-complexity direction-of-arrival estimation algorithm for NC signals via subspace rotation technique (SRT) is proposed. The proposed algorithm divides the noise subspace matrix along its row direction into two submatrices, and the SRT is performed to get a new reduced-dimension noise subspace. Then, utilizing the separation of variables and the orthogonality between the reduced-dimension noise subspace and the space spanned by the columns of the extended manifold matrix, a new one-dimensional spectral search function is derived to estimate DoAs. As the size of the block matrices of the noise subspace matrix has a great impact on the computational complexity of the spectral search, the optimal number of rows of the block matrices is determined. The proposed algorithm not only avoids the two-dimensional spectral search but also efficiently removes the redundancy computations in the one-dimensional spectral search. Theoretical analysis and simulation results show that the proposed algorithm can significantly improve the computational efficiency on the premise of ensuring the accuracy of DoA estimation for the NC signals, especially in scenarios where large numbers of sensors are applied.

Funder

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3