Affiliation:
1. School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
Abstract
Fractal theory is a branch of nonlinear scientific research, and its research object is the irregular geometric form in nature. On account of the complexity of the fractal set, the traditional Euclidean dimension is no longer applicable and the measurement method of fractal dimension is required. In the numerous fractal dimension definitions, box-counting dimension is taken to characterize the complexity of Julia set since the calculation of box-counting dimension is relatively achievable. In this paper, the Julia set of Brusselator model which is a class of reaction diffusion equations from the viewpoint of fractal dynamics is discussed, and the control of the Julia set is researched by feedback control method, optimal control method, and gradient control method, respectively. Meanwhile, we calculate the box-counting dimension of the Julia set of controlled Brusselator model in each control method, which is used to describe the complexity of the controlled Julia set and the system. Ultimately we demonstrate the effectiveness of each control method.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献