EMD-GM-ARMA Model for Mining Safety Production Situation Prediction

Author:

Wu Menglong1ORCID,Ye Yicheng12,Hu Nanyan1ORCID,Wang Qihu1,Jiang Huimin1,Li Wen1

Affiliation:

1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

2. Industrial Safety Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430081, China

Abstract

In order to improve the prediction accuracy of mining safety production situation and remove the difficulty of model selection for nonstationary time series, a grey (GM) autoregressive moving average (ARMA) model based on the empirical mode decomposition (EMD) is proposed. First of all, according to the nonstationary characteristics of the mining safety accident time series, nonstationary original time series were decomposed into high- and low-frequency signals using the EMD algorithm, which represents the overall trend and random disturbances, respectively. Subsequently, the GM model was used to predict high-frequency signal sequence, while the ARMA model was used to predict low-frequency signal sequence. Finally, aiming to predict the mining safety production situation, the EMD-GM-ARMA model was constructed via superimposing the prediction results of each subsequence, thereby compared to the ARIMA model, wavelet neural network model, and PSO-SVM model. The results demonstrated that the EMD-GM-ARMA model and the PSO-SVM model hold the highest prediction accuracy in the short-term prediction, and the wavelet neural network has the lowest prediction accuracy. The PSO-SVM model’s prediction accuracy decreases in medium- and long-term predictions while the EMD-GM-ARMA model still can maintain high prediction accuracy. Moreover, the relative error fluctuations of the EMD-GM-ARMA model are relatively stable in both short-term and medium-term predictions. This shows that the EMD-GM-ARMA model can provide high-precision predictions with high stability, proving the model to be feasible and effective in predicting the mining safety production situation.

Funder

Central Guided Local Science and Technology Development Special Project of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3