A Kinetic-Model-Based Approach to Identify Malfunctioning Components in Signal Transduction Pathways from Artificial Clinical Data

Author:

Li Xianhua1,Ribaudo Nicholas1,Huang Zuyi (Jacky)123

Affiliation:

1. Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA

2. The Center for Nonlinear Dynamics & Control (CENDAC), Villanova University, Villanova, PA 19085, USA

3. Villanova Center for the Advancement of Sustainability in Engineering (VCASE), Villanova University, Villanova, PA 19085, USA

Abstract

Detection of malfunctioning reactions or molecules from clinical data is essential for disease treatments. In order to find an alternative to the existing oversimplistic mathematical models, a kinetic model is developed in this work to infer the malfunctioning reactions/molecules by quantifying the similarity between the clinical profile and the output profiles predicted from the model in which certain reactions/molecules malfunction. The new approach was tested in IL-6 and TNF-α/NF-κB signaling pathway, for four abnormal conditions including up/downregulation of single reaction rate constants and up/downregulation of single molecules. Since limited quantitative clinical data were available, the IL-6 ODE model was used to generate artificial clinical data for the abnormal steady-state value shown in two key molecules: nuclear STAT3 and SOCS3. Similarly, the TNF-α/NF-κB model was used to obtain the data in which abnormal oscillation dynamic was shown in the profile of NF-κB. The results show that the approach developed in this study was able to successfully identify the malfunctioning reactions and molecules from the clinical data. It was also found that this new approach was noise-robust and that it managed to reveal unique solution for the faulty components in a network.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3