The Dynamic Response Law of Bank Slope under Water-Rock Interaction

Author:

Zhang Yinchai1,Deng Huafeng1ORCID,Wang Wei1,Duan Lingling1,Zhi Yongyan1,Li Jianlin1

Affiliation:

1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei, China

Abstract

During the reservoir operation process, the long-term security and stability of the bank slope is affected by dynamic response characteristics of its seismic action directly. Aimed at the typical bank slope existing in the actual reservoir environment, an experiment considering reservoir water level fluctuation and soaking-air-drying cyclic water-rock interaction has been designed and conducted while the cyclic loading test was performed in different water-rock cycles. Research results indicate the following: Firstly, in the process of water-rock interaction, the dynamic characteristics of sandstone show evident degradation trend, with the increase of the damping ratio and Poisson’s ratio and decrease of dynamic elastic modulus, and the former six water-rock cycle degradation effects are particularly obvious. Secondly, the numerical analog computation analysis of dynamic response in typical bank slope shows that as the water-rock interaction period is increased, the dynamic response of the slope hydro-fluctuation belt zone increases gradually, while the other parts weaken. Thirdly, under the long-term water-rock interaction process, the hydro-fluctuation belt zone gradually becomes a “soft layer” which is sensitive to the earthquake effect and dynamic response, resulting in a direct influence on long-term seismic performance of the bank slope. Therefore, it is necessary to make better protection for the bank slope hydro-fluctuation belt zone.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3