Improved HLLL Lattice Basis Reduction Algorithm to Solve GNSS Integer Ambiguity

Author:

Li Kezhao12,Tian Chendong1ORCID,Jiao Yingxiang1ORCID,Yue Zhe1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. Collaborative Innovation Center of BDS Research Application, Zhengzhou 450052, China

Abstract

Recently, lattice theory has been widely used for integer ambiguity resolution in the Global Navigation Satellite System (GNSS). When using lattice theory to deal with integer ambiguity, we need to reduce the correlation between lattice bases to ensure the efficiency of the solution. Lattice reduction is divided into scale reduction and basis vector exchange. The scale reduction has no direct impact on the subsequent search efficiency, while the basis vector exchange directly impacts the search efficiency. Hence, Lenstra-Lenstra-Lovász (LLL) is applied in the ambiguity resolution to improve the efficiency. And based on Householder transformation, the HLLL improved method is also used. Moreover, to improve the calculation speed further, a Pivoting Householder LLL (PHLLL) method based on Householder orthogonal transformation and rotation sorting is proposed here. The idea of PHLLL method is as follows: First, a sort matrix is introduced into the lattice basis reduction process to sort the original matrix. Then, the sorted matrix is used for Householder transformation. After transformation, it needs to be sorted again, until the diagonal elements in the matrix meet the ascending order. In addition, when using the Householder image operator for orthogonalization, the old column norm is modified to obtain a new norm, reducing the number of column norm calculations. Compared with the LLL reduction algorithm and HLLL reduction algorithm, the experimental results show that the PHLLL algorithm has higher reduction efficiency and effectiveness. The theoretical superiority of the algorithm is proved.

Funder

Key Project of Science and Technology of Henan

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3